Finite Time Adaptive Optimal Integral Sliding Mode Control for a Class of Uncertain Second Order Nonlinear Systems with Input Nonlinearity
نویسندگان
چکیده
Abstract In this paper, a new robust controller based on geometric homogeneity and adaptive integral sliding mode is proposed for a class of second order systems. The upper bound of the system disturbances is not required. Fully unknown parameters have been considered in the described model and its finite–time convergence to zero equilibrium point is proved. Moreover, the controller is developed in the presence of control singularity and unknown non-symmetric input saturation. The finite time stability of the proposed controller has been proved via classical Lyapunov criteria. In order to tune the control parameters, all the positive constant gains are optimized by ant colony optimization algorithm during the offline input-output training data. Two polar robots are introduced to show the performance of the designed controller. The robustness and error accuracy are proved in simulation results. Moreover, the effects of input nonlinearity such as input saturation have been considered in the simulation.
منابع مشابه
Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملSecond Order Sliding Mode Control With Finite Time Convergence
In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...
متن کاملSecond Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015